ON THE DISTRIBUTION OF $\alpha p^2 + \beta$ MODULO ONE FOR PRIMES p SUCH THAT $p + 2$ HAS NO MORE TWO PRIME DIVISORS

Tatyana L. Todorova
Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
e-mail: tlt@fmi.uni-sofia.bg

A classical problem in analytic number theory is to study the distribution of fractional part $\alpha p^k + \beta$, $k \geq 1$ modulo 1, where α is irrational and p runs over the set of primes. We consider the subsequence generated by the primes p such that $p + 2$ is an almost-prime (the existence of infinitely many such p is another topical result in prime number theory) and prove that its distribution has a similar property.

Keywords: linear sieve, almost primes, distribution modulo one.

This work was supported Sofia University Scientific Fund, grant 80-10-99/2023.

2020 Mathematics Subject Classification: 11J71, 11N36.
1. Introduction and statements of the result. The famous prime twins conjecture states that there exist infinitely many primes p such that $p + 2$ is a prime too. This hypothesis is still unproved but in 1973 Chen [2] proved that there are infinitely many primes p for which $p + 2 = P_2$. (As usual P_r denotes an integer with no more than r prime factors, counted according to multiplicity).

Let α be irrational real number and $\|x\|$ denote the distance from x to the nearest integer. The distribution of fractional parts of the sequence αn^k, $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ was first considered by Hardy, Littlewood [5] and Weyl [19]. The problem of distribution of the fractional parts of αp^k, where p denotes a prime, first was considered by Vinogradov (see Chapter 11 of [17] for the case $k = 1$, [18] for $k \geq 2$), who showed that for any real β there are infinitely many primes p such that

$$\|\alpha p + \beta\| < p^{-\theta},$$

where $\theta = 1/5 - \varepsilon, \varepsilon > 0$ is arbitrary small. After that many authors improved the upper bound of the exponent θ. The best result is given by Matomäki [10] with $\theta = 1/3 - \varepsilon$. Another interesting problem is the study of the distribution of the fractional part of αp^k with $2 \leq k \leq 12$, such Baker and Harman [1], Wong [1] etc. For $2 \leq k \leq 12$ the best result is due to Baker and Harman [1].

In [13] Todorova and Tolev considered the primes p such that $\|\alpha p + \beta\| < p^{-\theta}$ and $p + 2 = P_r$ and prove existence of such primes with $\theta = 1/100$ and $r = 4$. Later Matomäki [10] and San Ying Shi [11] have shown that this actually holds when $p + 2 = P_2$ and $\theta = 1/1000$ and $\theta = 1.5/100$ respectively.

In [12] Shi and Wu proved existence of infinitely many primes p such that $\|\alpha p^2 + \beta\| < p^{-\theta}$ and $p + 2 = P_4$ with $0 < \theta < 2/375$. In 2021 Xue, Li and Zhang [14] improved the result of Shi and Wu with $0 < \theta < 10/1561$.

In this paper we evaluate exponential sums over well-separated numbers and improve the results of Shi, Wu and Xue, Li and Zhang.

We will say that d is a well-separable number of level $D \geq 1$ if for any $H, S \geq 1$ with $HS = D$, there are integers $h \leq H, s \leq S$ such that $d = hs$.

Theorem 1. Suppose $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ satisfies conditions

$$\left| \alpha - \frac{a}{q} \right| < \frac{1}{q^2}, \quad a \in \mathbb{Z}, \quad q \in \mathbb{N}, \quad (a, q) = 1, \quad q \geq 1,$$

K and D are defined by (8), $\lambda(d)$ are complex numbers defined for $d \leq D$,

$$\lambda(d) \ll \tau(d) \text{ and } \lambda(d) \neq 0 \text{ if } d \text{ is well-separable number of level } D,$$

$c(k) \ll 1$ are complex numbers, $0 < |k| \leq K$. Then for any arbitrary small $\varepsilon > 0$ and $b \in \mathbb{Z}$ for the sum

$$W(x) = \sum_{d \leq D} \lambda(d) \sum_{1 \leq |k| \leq K} c(k) \sum_{n \equiv b \pmod{d}} e((\alpha n^2 + \beta)k) \Lambda(n)$$

we have

$$W \ll x^\varepsilon \left(\frac{xK}{\Delta^{2/3}} + \frac{xK}{q^{1/3}} + \frac{x\Delta^{2/3}}{q^{1/3}} + x^{\frac{2}{15}} \Delta^{2/3} K + x^{\frac{1}{15}} K^{1/3} q^{1/3} + x^{\frac{1}{3}} \Delta^{1/2} K^{1/2} q^{1/3} \right).$$

Remark 1. It is obvious that the Theorem 1 is true if function $\lambda(d)$ is well-factorable.

Lemma 1. Suppose $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ satisfies conditions (2), sum $W(x)$ is defined by (4), $\lambda(d)$ are complex numbers defined for $d \leq D$ and satisfying (3) and (8), $c(k) \ll 1$ are 40
complex numbers $0 < |k| \leq K$. Then there exist a sequence
$$\{x_j\}_{j=1}^{\infty}, \lim_{j \to \infty} x_j = \infty,$$
such that
$$W(x_j) \ll x_j^{1-\omega}, \quad j = 1, 2, 3, \ldots$$
for any $\omega > 0$.

Theorem 2. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ satisfies conditions (2), $\beta \in \mathbb{R}$ and let
$$0 < \theta < \frac{1}{1296} - \eta,$$
where η is arbitrary small fixed number. Then there are infinitely many primes p satisfying $p + 2 = P_2$ and such that
$$\|\alpha p^2 + \beta\| < p^{-\theta}.$$
Then
\[
\sum_{n \leq X} \min \left(\frac{XY}{n}, \frac{1}{\|\alpha n\|} \right) \ll XY \left(\frac{1}{q} + \frac{1}{Y} + \frac{q}{XY} \right) \log(2Xq).
\]

Proof. See Lemma 2.2 from [15], ch. 2, §2.1. \(\Box\)

Lemma 5. Let \(\mu, \zeta \in \mathbb{N}, \alpha \in \mathbb{R} \setminus \mathbb{Q}, \) and \(\alpha\) satisfy conditions (2). Then for every arbitrary small \(\varepsilon > 0\) the inequality
\[
\sum_{m \sim M} \tau_{\mu}(m) \sum_{j \sim J} \tau_{\zeta}(j) \min \left\{ \frac{x}{m^2j}, \frac{1}{\|\alpha m^2j\|} \right\} \ll x^\varepsilon \left(MJ + \frac{x}{M^{3/2}} + \frac{x}{Mq^{1/2}} + x^{1/2}q^{1/2} \right)
\]
is fulfilled.

Proof. See Lemma 8, [10]. \(\Box\)

Lemma 6. If \(d \mid P(z), \ z < D^{1/2}, \) \(\lambda^\pm\) are Rosser’s weights and either \(\lambda^+(d) \neq 0\) or \(\lambda^-(d) \neq 0\) then \(d\) is well-separated number.

Proof. See Lemma 12.16, [3] \(\Box\)

Theorem 3. Let \(2 \leq z \leq D^{1/2}\) and \(s = \frac{\log D}{\log z}\). If
\[
A_d = \frac{\omega(d)}{d} x + r(x, d) \quad \text{if} \quad \mu(d) \neq 0
\]
\[
\sum_{z_1 \leq p < z_2} \frac{\omega(p)}{p} = \log \left(\frac{\log z_2}{\log z_1} \right) + O\left(\frac{1}{\log z_1} \right), \quad z_2 > z_1 \geq 2
\]
where \(\omega(d)\) is a multiplicative function, \(0 < \omega(p) < p, \ x > 1\) is independent of \(d\). Then
\[
xV(z) \left(f(s) + O\left(\frac{1}{(\log D)^{1/3}} \right) \right) \leq S(A, z) \leq xV(z) \left(F(s) + O\left(\frac{1}{(\log D)^{1/3}} \right) \right),
\]
where \(d\) are well-separated numbers of level \(D\), \(f(s), F(s)\) are determined by the following differential-difference equations
\[
F(s) = \frac{2e^\gamma}{s}, \quad f(s) = 0 \quad \text{if} \quad 0 < s \leq 2
\]
\[
(sF(s))' = f(s-1), \quad (sf(s))' = F(s-1) \quad \text{if} \quad s > 2,
\]
where \(\gamma\) denote the Euler’s constant.

4. Auxiliary results.

Lemma 7. Let \(\alpha \in \mathbb{R} \setminus \mathbb{Q}\) satisfied conditions (2), \(M, S, J, x \in \mathbb{R}^+, \ x > M^3S^2J\) and \(\mu, \sigma, \zeta \in [2, \infty) \cap \mathbb{N}, \)
\[
G = \sum_{m \sim M} \tau_{\mu}(m) \sum_{s \sim S} \tau_{\sigma}(s) \sum_{j \sim J} \tau_{\zeta}(j) \min \left\{ \frac{x}{m^3s^2j}, \frac{1}{\|\alpha m^3s^2j\|} \right\}.
\]
Then for any \(\varepsilon > 0\) the inequalities
\[
G \ll x^\varepsilon \left(MSJ + \frac{x}{M^4S} + \frac{x}{M^2S^2} + \frac{x}{M^2q^{1/2}} + \frac{x^{7/2}q^{1/2}}{M^2S} \right)
\]
and
\[G \ll x^\varepsilon \left(MSJ + \frac{x}{M^4 S^4} + \frac{x}{M^2 S^4 q^4} + \frac{x^3 q^4}{M^2 S^4} \right) \]
are fulfilled.

Proof. Our proof is similar to proof of Lemma 8, [10]. Let
\[H = \frac{x}{M^3 S^2 J}. \]
If \(H \leq 2 \), then trivially from Lemma 2 (iv) we get
\[G \ll x^\varepsilon MSJ. \]
So we can assume that \(H > 2 \). From Lemma 2 (iv) it is obviously that
\[G \ll x^\varepsilon \sum_{m \sim M} \sum_{s \sim S} \sum_{j \sim J} \min \left\{ \frac{x}{m^3 s^2 j^2}, \frac{1}{\|\alpha m s^2 j\|} \right\}. \]

We apply the Fourier expansion to the function \(\min \left\{ \frac{x}{m^3 s^2 j^2}, \frac{1}{\|\alpha m s^2 j\|} \right\} \) and get
\[\min \left\{ \frac{x}{m^3 s^2 j^2}, \frac{1}{\|\alpha m s^2 j\|} \right\} = \sum_{0 < |h| \leq H^2} w(h)e(\alpha m s^2 jh) + O(\log x), \]
where
\[w(h) \ll \min \left\{ \log H, \frac{H}{|h|} \right\}. \]
Then
\[G \ll x^\varepsilon \sum_{0 < |h| \leq H^2} |w(h)| \sum_{s \sim S} \sum_{j \sim J} \left| \sum_{m \sim M} e(\alpha m s^2 jh) \right| + MSJ \log x. \]
So if
\[G(H_0) = \sum_{h \sim H_0} \sum_{s \sim S} \sum_{j \sim J} \left| \sum_{m \sim M} e(\alpha m s^2 jh) \right|. \]
then using (13) we have
\[G \ll x^\varepsilon \left(MSJ + \max_{1 \leq H_0 \leq H_1} G(H_0) + \max_{H_1 \leq H_0 \leq H^2} H \frac{H}{H_0} G(H_0) \right). \]
We shall evaluate the sum \(G(H_0) \). Applying the Cauchy–Schwarz inequality we obtain
\[G^2(H_0) \ll x^\varepsilon H_0 JS \sum_{h \sim H_0} \sum_{s \sim S} \sum_{j \sim J} \left| \sum_{m \sim M} e(\alpha m s^2 jh) \right|^2 \ll x^\varepsilon H_0 JS \sum_{h \sim H_0} \sum_{s \sim S} \sum_{j \sim J} \sum_{m_1 \sim M} \sum_{m_2 \sim M} e(\alpha (m_1^3 - m_2^3) s^2 jh). \]
Substituting \(m_1 = m_2 + t \), where \(0 \leq |t| \leq M \) we get
\[G^2(H_0) \ll x^\varepsilon \left(H_0^2 J^2 S^2 M + H_0 J S G_1(H_0) \right), \]
We will estimate the above sum in two ways. Using Lemma 5 we obtain

\[G_1(H_0) = \left| \sum_{h \sim H_0} \sum_{s \sim S} \sum_{j \sim J} \sum_{0 \lt |t| \lt M} \sum_{m_2 \sim M} e(\alpha(3m_2^2t + 3m_2t^2)s^2jh) \right|. \]

Applying again the Cauchy–Schwarz inequality we obtain

\[G_1^2(H_0) \ll H_0JS^4 \sum_{h \sim H_0} \sum_{s \sim S} \sum_{j \sim J} \sum_{0 \lt |t| \lt M} \sum_{m_2 \sim M} e(\alpha(3m_2^2t + 3m_2t^2)s^2jh). \]

Choosing \(m_2 = m_3 + \ell \), where \(0 \leq |\ell| \leq M \) we get

\[G_1^2(H_0) \ll H_0^2J^2S^2M^3 + H_0JS^4 \sum_{u \sim H_0J^2M^2} \tau_5(u) \sum_{s \sim S} \sum_{m_3 \sim M} e(\alpha m_3\ell^2 s^2j). \]

Let \(u = 6t\ell h_0j \). Then using Lemma 3 and Lemma 5 we get

\[G_1^2(H_0) \ll H_0^2J^2S^2M^3 + H_0JS^4 \sum_{u \sim H_0J^2M^2} \tau_5(u) \sum_{s \sim S} \sum_{m_3 \sim M} \min \left\{ \frac{H_0JS^2M^3}{s^2u}, \frac{1}{||\alpha s^2u||} \right\}. \]

We will estimate the above sum in two ways. Using Lemma 5 we obtain

\[G_1^2(H_0) \ll x^\varepsilon \left(H_0^2J^2S^2M^3 + H_0^2J^2S^2M^4 + \frac{H_0^2J^2S^2M^4}{q^2} + H_0^2J^2S^2M^2q^2 \right). \]

So from (16)

\[G(H_0) \ll x^\varepsilon \left(H_0JS^4 + H_0JS^2M + \frac{H_0JS^2M}{q^2} + H_0^2J^2S^2M^2q^2 \right). \]

Choosing \(H_0 = H \) from (11), (15) and (18) we get (9).

On the other hand we can write the inequality (17) as

\[G_1^2(H_0) \ll H_0^2J^2S^2M^3 + H_0JS^4 \sum_{k \sim H_0JS^2M^2} \min \left\{ \frac{H_0JS^2M^3}{k}, \frac{1}{||\alpha k||} \right\} \]

and using Lemma 4 and (16) we get

\[G^2(H_0) \ll x^\varepsilon \left(H_0^2J^2S^3M^3 + \frac{H_0^2J^2S^3M^4}{q} + H_0JS^2M \right). \]

Now we choose \(H_0 = H \). Then from (11), (15) and (19) the inequality (10) is received. \(\square \)

5. Proof of Theorem 1. To prove Theorem 1 we shall evaluate the sum \(W \) in two ways:

when \(x^{8/27} \Delta \leq D \leq \frac{x^{1/2}}{\Delta k^4} \), we will use the Vaughan’s identity;

when \(D \leq x^{8/27} \Delta \), we will use the Heat-Brown identity.
5.1. Evaluation by Vaughan’s identity. Let \(x^{8/27} \Delta \leq D \leq x^{1/2}/\Delta K^4 \) and \(0 < |K| \leq \delta^{-1} \log^2 x \). First we decompose the sum \(W(x) \) into \(O(\log^2 x) \) sums of type

\[
W = W(x, D, K) = \sum_{d \sim D} \lambda(d) \sum_{1 \leq |k| \sim K} c(k) \sum_{n+2 \equiv 0(d)} e((\alpha n^2 + \beta)k) \Lambda(n),
\]

where \(\lambda(d) \) is Roser weight and in particular a necessary condition for \(\lambda(d) \neq 0 \) is numbers \(d \) are squarefree. So from this point on we will use that numbers \(d \) are squarefree. Then by Vaughan’s identity we can decompose the sum \(W \) into \(O(\log x) \) type I sums

\[
W_1 = \sum_{d \sim D \atop (a, d) = 1} \lambda(d) \sum_{k \sim K} c(k)e(\beta k) \sum_{m \sim M \atop \ell \sim L} a(m)e(\alpha(m\ell)^2k)
\]

or

\[
W_1' = \sum_{d \sim D \atop (a, d) = 1} \lambda(d) \sum_{k \sim K} c(k)e(\beta k) \sum_{m \sim M \atop \ell \sim L} \log(n)e(\alpha(m\ell)^2k)
\]

with \(M \leq x^{1/3} \) and \(O(\log x) \) type II sums

\[
W_2 = \sum_{d \sim D \atop (a, d) = 1} \lambda(d) \sum_{k \sim K} c(k)e(\beta k) \sum_{m \sim M \atop \ell \sim L} a(m)b(\ell)e(\alpha(m\ell)^2k)
\]

with \(M \in [x^{1/3}, x^{2/3}] \) and

\[
ML \sim x, \quad a(m) \ll \tau_3(m) \log m, \quad b(\ell) \ll \tau_3(\ell) \log \ell
\]

5.1.1. Evaluation of type II sums. The proof follows proof of Theorem 1, [10]. As \(x^{1/3} \leq M, L \leq x^{2/3} \) and \(ML \sim x \) we will consider only the case \(x^{1/2} \leq M \leq x^{2/3} \). The evaluation in the case \(x^{1/2} \leq L \leq x^{2/3} \) is the same. Using that \(d \) is well-separated numbers we write \(d = hs \), where \((h, s) = 1 \) as \(d \) is squarefree. So the sum \(W_2 \) is presented as \(O(\log^2 x) \) sums of the type

\[
W_2 = \sum_{h \sim H \atop (h, a) = 1} \sum_{s \sim S \atop (s, ah) = 1} \lambda(hs) \sum_{k \sim K} c(k)e(\beta k) \sum_{\ell \sim L \atop m \sim M} a(m)b(\ell)e(\alpha(m\ell)^2k).
\]

Here

\[
h \sim H, \quad s \sim S, \quad D \sim HS
\]

and \(H \) we will choose later. Applying the Cauchy–Schwarz inequality to \(W_2 \) and using and Lemma 2(i) we obtain that
We apply again the Cauchy–Schwarz inequality and get
\[
W_2^2 \ll x^e K HM \sum_{k \sim K} \sum_{h \sim H} \sum_{s_1' \sim S} \lambda(h s_1') \sum_{s_2' \sim S} \lambda(h s_2')
\times \sum_{\ell_1 \sim L} b(\ell_1) \sum_{\ell_2 \sim L} b(\ell_2) \sum_{m \sim M} e(\alpha m^2 (\ell_1^2 - \ell_2^2)k).
\]

Let \((s_1', s_1') = r, s_1' = rs_1, s_2' = rs_2, r \sim R, R \leq S\) and \(s_1', s_2' \sim S/R\). Then
\[
W_2^2 \ll x^e K HM \sum_{k \sim K} \sum_{h \sim H} \sum_{r \sim R} \sum_{s_1' \sim S/R} \lambda(h s_1') \sum_{s_2' \sim S/R} \lambda(h s_2')
\times \sum_{\ell_1 \sim L} b(\ell_1) \sum_{\ell_2 \sim L} b(\ell_2) \sum_{m \sim M} e(\alpha m^2 (\ell_1^2 - \ell_2^2)k)
\]
\[
= W_{21} + W_{22},
\]
where \(W_{21}\) is this one part of above sum for which
\[
\ell_1 = \ell_2, \quad s_1 \neq s_2 \quad \text{or}
\]
\[
\ell_1 = \ell_2, \quad s_1 = s_2 = 1 \quad r \sim S \quad \text{or}
\]
\[
\ell_1 \neq \ell_2, \quad s_1 = s_2 = 1 \quad r \sim S \quad \text{or}
\]
\[
\ell_1 \neq \ell_2, \quad s_1 \neq s_2, \quad M < \frac{4HS^2}{R},
\]
\(W_{22}\) is the rest part of sum for \(W_2^2\). To evaluate the sum \(W_{21}\) we consider the cases \(x^{1/2} \leq M \leq \frac{x}{D}\) and \(x^{1/3} \leq L \leq D\). Then using Lemma 2 we get
\[
W_{21} \ll x^e \left(xMHK^2 + xD^2K^2 + \frac{x^2HK^2}{D} + \frac{xLD^2K^2}{H} \right).
\]
It is clear that for sum \(W_{22}\) we have \(\ell_1 \neq \ell_2, s_1 \neq s_2, M > \frac{4HS^2}{R}\). From \(m_1 \equiv a(hs_1), m_2 \equiv a(hs_2)\) follows that \(\ell_1 \equiv \ell_2(hr)\).

We apply again the Cauchy–Schwarz inequality and get
\[
W_{22}^2 \ll \frac{x^{2+\varepsilon}D^2K^3}{R^2} \sum_{k \sim K} \sum_{h \sim H} \sum_{r \sim R} \sum_{s_1' \sim S/R} \sum_{s_2' \sim S/R} \sum_{m_1 \sim M} \sum_{m_2 \sim M}
\times \sum_{\ell_1 \sim L} \sum_{\ell_2 \sim L} \sum_{m_1 \ell_1 \equiv a(hs_1)} \sum_{m_2 \ell_2 \equiv a(hs_2)} e(\alpha (m_1^2 - m_2^2) (\ell_1^2 - \ell_2^2)k).
\]
Let \(W_{221}\) be this one part of above sum for which \(m_1 = m_2\) and \(W_{222}\) be this part for
which $m_1 \neq m_2$. It is not difficult to see that

\[(25) \quad W_{221} \ll \frac{x^{3+\varepsilon}LD^2K^4}{H}.
\]

Let consider the sum W_{222}. As

\[m_i\ell_1 \equiv a \pmod{hrs_1} \quad \text{and} \quad m_i\ell_2 \equiv a \pmod{hrs_2}, \quad i = 1, 2\]

we get

\[m_1 \equiv m_2 (\pmod{hrs_1s_2}) \equiv f(m_1hrs_1s_2), \quad \text{where} \quad f = f(h, r, s_1, s_2, \ell_1, \ell_2)\]

and $\ell_1 \equiv \ell_2 (\pmod{hr})$. Let

\[m_1 = m_2 + hrs_1s_2t, \quad 0 < |t| \leq \frac{8MR}{HS^2} \quad \text{and} \quad \ell_1 = \ell_2 + hru, \quad 0 < |u| \leq \frac{2L}{HR}.
\]

Then

\[m_1^2 - m_2^2 = 2m_2hrs_1s_2t + h^2r^2s_1^2s_2^2t^2 \quad \text{and} \quad \ell_1^2 - \ell_2^2 = hru(2\ell_2 + hru).
\]

So using above equalities and Lemma 3 we obtain

\[W_{222} \ll \frac{x^{2+\varepsilon}D^2K^3}{R^2} \sum_{k \sim K} \sum_{h \sim H} \sum_{r \sim R} \sum_{s_1 \sim S/R} \sum_{s_2 \sim S/R} \sum_{(s_1, ah) = 1} \sum_{(s_2, ah) = 1} \min \left\{ \frac{1}{hrs_1s_2}, \frac{1}{\|2ahr^3s_1^2s_2^2tu\ell k\|} \right\},
\]

where $\ell = 2\ell_2 + hru$. We put

\[m = hr, \quad s = s_1s_2, \quad j = 2tunk, \quad j \ll \frac{xLK}{D^2}
\]

and it is clear that the sum W_{222} can be represented as a finite number of sums of the type

\[W_{223} = \frac{x^{2+\varepsilon}D^2K^3}{R^2} \sum_{m \sim HR} \tau(m) \sum_{s \sim R^2/s^2} \tau(s) \sum_{j \ll \frac{xLK}{D^2}} \tau_5(j) \min \left\{ \frac{x^2K}{m^3s^2j}, \frac{1}{\|\alpha m^3s^2j\|} \right\}.
\]

Using Lemma 7, (21), (23), (24) and (25) we get

\[(26) \quad W_{223} \ll x^\varepsilon \left(x^{\frac{1}{2}}M^2H^2K + x^{\frac{1}{2}}DK + \frac{x^2L^2DK}{H^2} + \frac{x^3L^2DK}{H^2} + \frac{xH\frac{1}{2}K}{D^2}
\]

\[+ \frac{xK}{H^\frac{1}{2}} + \frac{xH\frac{1}{2}K}{D^\frac{1}{2}} + \frac{xK}{q^{1/2}} + \frac{x^2K^{3/2}q^{1/2}}{\Delta K^4} \right)
\]

According to D, M and L we have

\[(27) \quad W_{223} \ll x^\varepsilon \left(V_1 + V_2 + V_3 + V_4 \right),
\]

where V_1 is the sum with

\[(28) \quad x^{1/2} \leq M \leq \frac{x}{D}, \quad x^{2/5} \leq D \leq \frac{x^{1/2}}{\Delta K^4},
\]

\[D \leq L \leq x^{1/2},
\]
V_2 is the sum with

$$\frac{x}{D} \leq M < x^{1/3} D^{2/3}, \quad x^{2/5} \leq D \leq \frac{x^{1/2}}{\Delta K^4}$$

(29)

and V_3 is the sum with

$$x^{1/3} D^{2/3} \leq M \leq x^{2/3}, \quad x^{2/5} \leq D \leq \frac{x^{1/2}}{\Delta K^4}$$

(30)

and V_4 is the sum with

$$x^{1/2} \leq M \leq x^{2/3}, \quad x^{8/27} \Delta \leq D \leq x^{2/5}$$

(31)

For sums V_1, V_2, V_3 and V_4 we choose consequently

$$H = \frac{D}{\Delta^{1/2}}, \quad H = \frac{LD^{2/3}}{x^{1/3}}, \quad H = \frac{x^{1/3}}{\Delta}, \quad H = \frac{L^{4/5} D^{9/5}}{x^{4/5}}.$$

and from (26), (28), (29), (30) and (31) we get

$$W_2 \ll \begin{cases}
 x^e \left(\frac{xK}{\Delta^{1/2}} + x^{5/6} D^{1/2} \Delta^{1/2} K + \frac{xK}{q^{1/2}} + x^{15/27} K^{31/32} q^{1/32} \right), & \text{if } x^{2/5} \leq D \leq \frac{x^{1/2}}{\Delta K^4}, \\
 x^e \left(\frac{x^{31/32} K}{D^{1/2}} + \frac{xK}{q^{1/2}} + x^{15/27} K^{31/32} q^{1/32} \right), & \text{if } x^{8/27} \Delta \leq D \leq x^{2/5}.
\end{cases}$$

So

$$W_2 \ll x^e \left(\frac{xK}{\Delta^{1/2}} + x^{5/6} D^{1/2} \Delta^{1/2} K + \frac{xK}{q^{1/2}} + x^{15/27} K^{31/32} q^{1/32} \right).$$

(32)

5.1.2. Evaluation of type I sums. In this case we have that $L > x^{2/3}$ and $M < x^{3/4}$. Again we will use that d is well-separated numbers. So we can write $d = hs$ with h and s satisfying conditions (21) and we will choose H later. So the sum W_1 is presented as $O(\log^2 x)$ sums of the type

$$W_1 = \sum_{h \sim H} \sum_{s \sim S} \lambda(hs) \sum_{k \sim K} c(k)e(\beta k) \sum_{\ell \sim L} \sum_{m \sim M} a(m)e(\alpha(m\ell)^2 k).$$

Working in the same way as in the evaluation of the sum W_2 see (22), we get

$$W_1^2 \ll x^e KHM \sum_{k \sim K} \sum_{h \sim H} \sum_{r \sim R} \sum_{s_1 \sim S/R} \lambda(hrs_1) \sum_{s_2 \sim S/R} \lambda(hrs_2)$$

$$\times \sum_{\ell_1 \sim \Lambda} b(\ell_1) \sum_{\ell_2 \sim \Lambda} b(\ell_2) \sum_{m \sim M} \sum_{m \sim M} e(\alpha m^2 (\ell_1^2 - \ell_2^2) k)$$

$$= W_{11} + W_{12} + W_{13},$$

48
where W_{12} is this one part of above sum for which
\[\ell_1 = \ell_2, \]
W_{13} is this one part of above sum for which
\[\ell_1 \neq \ell_2, \quad s_1 = s_2 = 1 \quad r \sim S \]
and W_{11} is the rest part of sum for W^2. Using that $L > x^{\frac{2}{3}}$ and $M < x^{\frac{1}{5}}$ we get

\[
(34) \quad W_{12} \ll x^\varepsilon x M H K^2.
\]

For the sum W_{13} we get

\[
W_{13} \ll x^\varepsilon KHM \sum_{k \sim K} \sum_{d \sim D} \sum_{m \sim M} \left| \sum_{\ell_i \sim L, m \ell_i \equiv a(d)}^{t \sim T} e(\alpha m^2 (\ell_1^2 - \ell_2^2)k) \right|.
\]

As $\ell_1 \equiv \ell_2 (\text{mod } d)$ we put

\[
\ell_1 = \ell_2 + du, \quad 0 < |u| \ll \frac{L}{D}.
\]

So

\[
W_{13} \ll x^\varepsilon KHM \sum_{k \sim K} \sum_{d \sim D} \sum_{m \sim M} \sum_{u \ll \frac{L}{D}} \left| \sum_{\ell_2 \sim L, m \ell_2 \equiv a(d)}^{t \sim T} e(2\alpha m^2 \ell_2 udk) \right|
\]

and from Lemma 3 we get

\[
W_{13} \ll x^\varepsilon KHM \sum_{k \sim K} \sum_{d \sim D} \sum_{m \sim M} \sum_{u \ll \frac{L}{D}} \min \left\{ \frac{x^2 K}{m^2 d^2 (2uk)}, \frac{1}{\|\alpha m^2 d^2 (2uk)\|} \right\}
\]

The above sum can be represented as a finite number of sums of the type

\[
W_{14} \ll x^\varepsilon KHM \sum_{z \sim MD} \tau(z) \sum_{t \ll \frac{L}{D}} \tau_3(t) \min \left\{ \frac{x^2 K}{z^2 |t^2 \| \|\alpha z^2 t\|} \right\}
\]

Using Lemma 5 and $ML \sim x$ we obtain

\[
(35) \quad W_{13}^{\frac{1}{2}} \ll x^{\varepsilon} \left(x^{\frac{13}{2}} M^{\frac{1}{2}} H^\frac{1}{2} K + \frac{x^{\frac{13}{2}} L^\frac{1}{2} H^\frac{1}{2} K}{D^\frac{1}{2}} + \frac{x H^\frac{1}{2} K}{D^\frac{3}{2} q^\frac{1}{2}} + \frac{x^{\frac{13}{2}} H^\frac{1}{2} q^\frac{1}{2} K^\frac{1}{2}}{D^\frac{3}{2}} \right)
\]

Using analogous reasoning for the sum W_{11} we get

\[
(36) \quad W_{11} \ll x^\varepsilon KHM \sum_{k \sim K} \sum_{h \sim H} \sum_{r \sim R} \sum_{s_i \sim S/R} \sum_{s_1 s_2, ah = 1} \left| \sum_{m \sim M} \sum_{u \ll \frac{L}{D}} \right| \sum_{\ell_2 \sim L, m \ell_2 \equiv a(hrs_2)}^{m \ell_2 + uhr \equiv a(s_1)} e(2\alpha m^2 \ell_2 uhrk) \right|
\]
and from Lemma 3 we obtain

\[W_{11} \ll x^\varepsilon KHM \sum_{k \sim K} \sum_{h \sim H} \sum_{r \sim R} \sum_{s_i \sim S/R} \sum_{i=1,2} \sum_{m \sim M} \sum_{u \ll \frac{1}{\pi^2 \gamma}} \min \left\{ \frac{L}{hfs_1s_2}, \| \alpha m^2 h^2 r^2 \| s_1 s_2 u k \right\}. \]

Applying Lemma 5 and using that \(ML \sim x \) we get

\[W_{11}^{1/2} \ll x^\varepsilon \left(\frac{x \bar{K}}{H} + \frac{x^2 L \bar{K}}{H^2} + \frac{xK}{q} + x^2 q^2 K \right). \]

Choosing \(H = \frac{D}{M^2} \) from (34), (35), (37), (22) and (5) follows

\[W_1 \ll x^\varepsilon \left(\frac{xK}{D^4} + \frac{xK}{q^4} + x^2 K \right). \]

From (32) and (38) it follows that in the case \(x^{8/27} \Delta \leq D \leq x^{1/2} \Delta K^4 \) the estimate

\[W \ll x^\varepsilon \left(\frac{xK}{\Delta^4} + x^\frac{5}{7} D^\frac{1}{4} \Delta^\frac{1}{4} K + xK + x^\frac{15}{16} K^3 \right) \]

is fulfilled.

5.2. Evaluation by Heat-Brown’s identity. Let \(D \leq x^{8/27} \Delta \). We decompose the sum \(W(x) \) into \(O(\log^2 x) \) as in (4). Using Heath-Brown’s identity [6] with parameters

\[P = x/2, P_1 = x, u = \frac{x^{1/3}}{2^{21} D}, v = 2^7 x^{1/3}, w = 2^7 x^{1/3} D^\frac{1}{4}, \]

we decompose the sum \(W \) as a linear combination of \(O(\log^6 N) \) sums of first and second type. The sums of the first type are

\[W_1 = \sum_{d \leq D} \lambda(d) \sum_{0 < |k| \leq K} c(k)e(\beta k) \sum_{M < m \leq M_1} a_m \sum_{L < \ell \leq L_1 \atop m \ell = -2(d)} e(\alpha m^2 \ell^2 k) \]

and

\[W'_1 = \sum_{d \leq D} \lambda(d) \sum_{0 < |k| \leq K} c(k)e(\beta k) \sum_{M < m \leq M_1} a(m) \sum_{L < \ell \leq L_1 \atop m \ell = -2(d)} \log \ell e(\alpha m^2 \ell^2 k), \]

where

\[M_1 \leq 2M, \quad L_1 \leq 2L, \quad ML \asymp x, \quad L \geq w, \quad a(m) \ll x^\varepsilon. \]

The sums of the second type are

\[W_2 = \sum_{d \leq D} \lambda(d) \sum_{0 < |k| \leq K} c(k)e(\beta k) \sum_{L < \ell \leq L_1 \atop m \ell = -2(d)} b(\ell) \sum_{M < m \leq M_1} a(m)e(\alpha m^2 \ell^2 k), \]

where

\[M_1 \leq 2M, \quad L_1 \leq 2L, \quad ML \asymp x, \quad u \leq L \leq v, \quad a(m), b(\ell) \ll x^\varepsilon. \]
5.2.1. Evaluation of type II sums. Applying the Cauchy–Schwarz inequality to W_2 and using Lemma 2(i), (40), (42) and (46) we obtain that

$$W_2^2 \ll x^6 KDM \sum_{k \sim K} \sum_{d \sim D} \sum_{\ell_1, \ell_2} b(\ell_1)b(\ell_2) \sum_{m_i \sim M} \sum_{\ell_1 \equiv \ell_2 (d)} e(\alpha m^2 (\ell_1^2 - \ell_2^2)k)$$

$$= W_{21} + x^{1+\varepsilon} MDK^2$$

where

$$W_{21} = x^6 KDM \sum_{k \sim K} \sum_{d \sim D} \sum_{\ell_1, \ell_2} b(\ell_1)b(\ell_2) \sum_{m_i \sim M} \sum_{\ell_1 \equiv \ell_2 (d)} e(\alpha m^2 (\ell_1^2 - \ell_2^2)k)$$

Applying again the Cauchy–Schwarz inequality and substituting

$$m_1 = m_2 + td, \ t \ll \frac{M}{D} \text{ and } \ell_1 = \ell_2 + \omega d, \ \omega \ll \frac{L}{D}$$

we sequentially obtain

$$W_{21}^2 \ll x^{2+\varepsilon} D^2K^3 \sum_{k \sim K} \sum_{d \sim D} \sum_{\ell_1, \ell_2} \sum_{m_i \sim M} \sum_{\ell_1 \equiv \ell_2 (d)} e(\alpha (m_1^2 - m_2^2)(\ell_1^2 - \ell_2^2)k)$$

$$+ x^{3+\varepsilon} LDK^4$$

$$= W_{22} + x^{3+\varepsilon} LDK^4$$

with

$$W_{22} \ll x^{2+\varepsilon} D^2K^3 \sum_{k \sim K} \sum_{d \sim D} \sum_{\omega \ll \frac{L}{k}, \ t \ll \frac{M}{d}} \min \left\{ \frac{M}{d}, \left\| \alpha d^3 \omega (2\ell_2 + \omega d)k \right\| \right\}$$

Putting $\ell = \ell_2 + \omega d$ and $z = \omega \ell k t$ we get

$$W_{22} \ll x^{2+\varepsilon} D^2K^3 \sum_{d \sim D} \sum_{z \ll \frac{LK}{d^2}} \tau_4(z) \min \left\{ \frac{x^2 K}{d^3 z}, \frac{1}{\left\| \alpha d^3 z \right\|} \right\}$$

If

$$\Delta < D \leq x^{\frac{3}{7}} \Delta$$

then from inequality (10) of Lemma 7, (43), (44) and (45) we get

$$W_2 \ll x^\varepsilon \left(x^{\frac{77}{49}} \Delta \frac{q^2}{\sqrt{d}} K + \frac{xK}{q^{\frac{1}{4}}} + \frac{xK}{\Delta^{\frac{1}{8}}} + x^{\frac{15}{16}} q^3 K^4 \right)$$

If

$$D \leq \Delta$$

we will estimate the sum W_{22} by putting $u = d^3 z$ and applying Lemma 4, Lemma 2 (ii) to find

$$W_2 \ll x^\varepsilon \left(x^{\frac{77}{49}} \Delta \frac{q^2}{\sqrt{d}} K + \frac{x\Delta^\frac{1}{2}}{q^{\frac{1}{4}}} + \frac{xK}{q^{\frac{1}{8}}} + \frac{xK}{\Delta^{\frac{1}{8}}} + x^{\frac{15}{16}} q^3 K^4 \right).$$
From (47) and (50) we get

\[(50) \quad W_2 \ll x^\varepsilon \left(\frac{x}{2} \Delta^\frac{3}{2} K + \frac{x}{q^2} \Delta^\frac{1}{2} + \frac{x}{q^4} \Delta^\frac{1}{4} + \frac{x}{q^6} \Delta^\frac{1}{6} K + x^\frac{1}{4} \Delta^\frac{1}{4} K^\frac{3}{4} q^\frac{1}{2} \right) \]

5.2.2. Evaluation of type I sums. Reasoning as in the estimation of the sum \(W_{13}\) (see (5.1.2)) we obtain

\[(51) \quad W_1^2 \ll x^\varepsilon MDK \sum_{z \sim MD} \tau(z) \sum_{t \ll \frac{L}{K}} \tau_5(t) \min \left\{ \frac{x^2 K}{z^2 t}, \frac{1}{\|\alpha z^2 t\|} \right\} + x^\varepsilon MDK^2.\]

Using Lemma 5 and \(ML \sim x\) we obtain

\[(52) \quad W_1^2 \ll x^\varepsilon \left(MDK^2 + \frac{x^2 K^2}{(MD)^\frac{3}{2}} + \frac{x^2 K^2}{q^2} + \frac{xK^2}{q^2} + xK^\frac{3}{2} q^\frac{1}{2} \right) \]

Using the inequality (51) we will evaluate the sum \(W_1\) in one more way. Let \(u = z^2 t\) and from Lemma 4 (iii) and Lemma 2 (iv) we find

\[(53) \quad W_1^2 \ll x^\varepsilon MDK \sum_{u \ll xMDK} \tau_5(u) \min \left\{ \frac{x^2 K}{u}, \frac{1}{\|\alpha u\|} \right\} \ll x^\varepsilon \left(MDKq + xM^2 D^2 K^2 + \frac{x^2 MDK^2}{q} \right) \]

If \(MD > \Delta\) using the estimate (52) we get

\[(54) \quad W_1 \ll x^\varepsilon \left(x^{\frac{27}{45}} \Delta^{\frac{6}{10}} K + \frac{xK}{\Delta^\frac{1}{4}} + \frac{x}{q^\frac{1}{2}} + x^\frac{1}{2} K^\frac{3}{2} q^\frac{1}{2} \right). \]

If \(MD \leq \Delta\) from (53) it follows

\[(55) \quad W_1 \ll x^\varepsilon \left(x^{\frac{1}{2}} \Delta K + \frac{x}{q^\frac{1}{2}} \Delta^\frac{1}{2} K^\frac{1}{2} q^\frac{1}{2} \right), \]

then using (54) and (55) we get

\[(56) \quad W_1 \ll x^\varepsilon \left(x^{\frac{27}{45}} \Delta^{\frac{6}{10}} K + \frac{xK}{\Delta^\frac{1}{4}} + \frac{x}{q^\frac{1}{2}} + x^\frac{1}{2} K^\frac{3}{2} q^\frac{1}{2} \right). \]

From (39), (50) and (56)

\[(57) \quad W \ll x^\varepsilon \left(\frac{xK}{\Delta^\frac{1}{2}} + \frac{xK}{q^\frac{1}{2}} + x^\frac{1}{2} \Delta^\frac{1}{2} K^\frac{3}{4} q^\frac{1}{2} \right). \]

5.3. Proof of Lemma 1. In Theorem 2 choose

\[(58) \quad x = q, \quad \Delta = K^{\frac{22}{34}}, \quad K = x^\frac{1}{20m}, \quad D = \frac{x^{1/2}}{\Delta K^{1/4}}, \]

where \(\eta\) is arbitrary small fixed number.

6. Proof of Theorem 2. As in [13] we take a periodic function with period 1 such that

\[(59) \quad 0 < \chi(t) < 1 \quad \text{if} \quad -\delta < t < \delta; \]

\[\chi(t) = 0 \quad \text{if} \quad \delta \leq t \leq 1 - \delta, \]

52
and which has a Fourier series

$$\chi(t) = \delta + \sum_{|k| > 0} c(k)e(kt),$$

with coefficients satisfying

$$c(0) = \delta,$$

$$c(k) \ll \delta \quad \text{for all } k,$$

$$\sum_{|k| > K} |c(k)| \ll x^{-1}$$

and δ and K satisfying the conditions (8).

The existence of such a function is a consequence of a well known lemma of Vinogradov (see [9], ch. 1, §2).

Next we will use sieve methods. As usual, for any sequence A of integers weighted by the numbers f_n, $n \in A$, we set

$$S(A, z) = \sum_{n \in A, (n, P(z)) = 1} f_n$$

and denote by A_d be the subsequence of elements $n \in A$ with $n \equiv 0 \pmod{d}$. We write

$$P(z) = \prod_{p < z} p, \quad V(z) = \prod_{p | P(z)} \left(1 - \frac{\omega(p)}{p}\right) \quad \text{and} \quad C_0 = \prod_{p > 2} \left(1 - \frac{1}{(p-1)^2}\right).$$

and we will use the linear sieve due to Iwaniec – this is Theorem 3 (see [7]).

To prove Theorem 2, it suffice to show that

$$S(A, N^{1/3}) = \sum_{n+2 \leq x, (n+2, P(x^{1/3})) = 1} \chi(\alpha n^2 + \beta) \Lambda(n) > 0.$$

Following the exposition in Shi’s article (see [11]) we have that

$$S \geq \sum_{n+2 \leq x, (n+2, P(x^{1/12})) = 1} \chi(\alpha n^2 + \beta) \Lambda(n) \left(1 - \frac{1}{2} \sum_{x^{1/12} < p_1 < x^{1/3}} \sum_{n \equiv -2(p_1)} 1 - \frac{1}{2} \sum_{n+2 = p_1 p_2 p_3} \right.$$

$$\left. \sum_{x^{1/12} < p_1 < x^{1/3}} \sum_{x^{1/3} < p_2 < \left(\frac{x}{p_1}\right)^{1/2}} 1 + O(x^{11/12}) \right).$$

So
\[S \geq S(A, x^{1/12}) - \frac{1}{2} \sum_{x^{1/12} \leq p_1 < x^{1/3.1}} S(A_{p_1}, x^{1/12}) - \frac{1}{2} \sum_{x^{1/3.1} \leq p_1 < x^{1/3.1} \leq p_2 < \left(\frac{x}{p_1} \right)^{1/2}} S(A_{p_1p_2}, x^{1/12}) \]

\[- \sum_{x^{1/12} \leq p_1 < p_2 < \left(\frac{x}{p_1} \right)^{1/2}} S(A_{p_1p_2}, x^{1/12}) + O(x^{11/12}) \]

\[= S_1 - \frac{1}{2} S_2 - \frac{1}{2} S_3 - S_4 + O(x^{11/12}) \]

and it is enough to proof that above expression is positive. Consider a square-free number \(d \). If \(2 \mid d \), then we write \(|A_d| = |r(A, d)| \leq 1 \). Otherwise we have by the Fourier expansion of \(\chi(n) \) that

\[|A_d| = \sum_{\frac{n}{\phi(d)} \equiv -1(d)} \chi(\alpha n^2 + \beta) \Lambda(n) \]

\[= \sum_{\frac{n}{\phi(d)} \equiv -1(d)} \left(\delta + \delta \sum_{0 < |k| < K} c(k) e(\alpha n^2 k) \Lambda(n) + O(x^{-1}) \right) \]

\[= \delta \left(\frac{x}{\phi(d)} + R_1(d) + R_2(d) + O\left(\frac{x}{d(\log x)^4} \right) \right). \]

Here \(c(k) \ll 1 \),

\[R_1(d) = \sum_{\frac{p}{\phi(d)} \equiv -1(d)} \frac{1 - x}{\phi(d)} \]

\[R_2(d) = \sum_{0 < |k| < K} c(k) \sum_{\frac{n}{\phi(d)} \equiv -2(d)} e(\alpha n^2 k) \Lambda(n) \]

Applying Bombieri–Vinogradov theorem (see [8], Theorem 17.1)

\[\sum_{d \leq D} |R_1(d)| \ll \frac{x}{(\log x)^4}. \]

On the other hand, Theorem 1 implies that for a well-separated numbers \(d \) of level \(D = \frac{x^{1/2}}{\Delta K^4} \) and \(\lambda(d) \ll \tau(d) \) we get

\[\sum_{d \leq D} \lambda(d) R_2(d) \ll \frac{x}{(\log x)^4} \]

when \(q = x \), where \(a/q \) convergent to \(\alpha \) with a large enough denominator. From here on, the reasoning we go through is the same as in Shi’s paper (see [11]). We will only note
that to estimate the sum
\[\sum_{x^{1/12} \leq p < x^{1/3}} \sum_{d \leq D} R_2(pd) \]
with \(D = \frac{x^{1/2}}{\Delta p K^4} \) first we present it as a \(O(\log^4 x) \) number of sums of the type
\[R_2(P) = \sum_{d \sim D} \lambda(d) \sum_{1 \leq |k| \sim K} c(k) \sum_{p \sim P} \sum_{n \sim x \atop n+2 \equiv 0 (p_1)} e(\alpha n^2 k) \Lambda(n), \]
where \(x^{1/12} \leq P < x^{1/3}/2. \)

If \(DP \leq x^{8/27} \Delta \) we put \(t = dp \) and represent the sum \(R_2(P) \) in type:
\[R_2(P) = \sum_{1 \leq |k| \sim K} c(k) \sum_{t \sim DP} g(t, d) \sum_{n \sim x \atop n+2 \equiv 0 (t)} e(\alpha n^2 k) \Lambda(n), \]
where
\[g(t, d) = \sum_{d \sim D \atop d(t, P(z)) \atop t/d > x^{1/12}} \lambda(d) \ll \tau(t) \]
and evaluation is in the same way as in §5.2.

If \(DP \geq x^{8/27} \Delta \) then, depending on which interval \(P \) falls into, and bearing in mind Remark 2 and the fact that \(d \) is well-separated, we choose \(H \) so that \(PH \) falls into one of the intervals \(x^{2/5} \leq PH \leq x^{1/2} \frac{1}{\Delta K^4} \) or \(x^{8/27} \Delta \leq PH \leq x^{2/5} \). So
\[R_2(P) = \sum_{1 \leq |k| \sim K} c(k) \sum_{s \sim S} \sum_{h \sim H} \lambda(hs) \sum_{p_1 \sim P} \sum_{n \sim x \atop n+2 \equiv 0 (d) \atop n+2 \equiv 0 (p_1)} e(\alpha n^2 k) \Lambda(n) \]
\[= \sum_{1 \leq |k| \sim K} c(k) \sum_{s \sim S} \sum_{t \sim PH} g(t, s) \sum_{n \sim x \atop n+2 \equiv 0 (ts)} e(\alpha n^2 k) \Lambda(n) \]
where
\[g(t, s) = \sum_{h \sim H \atop h|t, P(z)} \lambda(hs) \ll \tau(t) \]
and evaluation is in the same way as in §5.1.

Using the same calculation as in [11] with
\[z = x^{1/12}, \quad \Delta = K^{33/34}, \quad K = x^{1/1200 - \eta}, \quad D = \frac{x^{1/2}}{\Delta K^4}, \]
we get that inequality (62) is true and the proof of Theorem is complete.
REFERENCES